<u>Critical Care Cycling to Improve Lower</u> <u>Extremity Strength</u>

Michelle Kho, PT, PhD on behalf of the CYCLE Investigators and the Canadian Critical Care Trials Group

October 10, 2024

ACT RFA 1 Competition

CCCTG Canadian Critical Care Trials Group

CANADA RESEARCH CHAIRS CHAIRES DE RECHERCHE DU CANADA

ACCELERATING Clinical Trials Accélérer les Essais Cliniqu

Funding Acknowledgements

Chaires de recherche du Canada Canada Research Chairs

Ontario Research Fund

INNOVATION

Canada Foundation for Innovation Fondation canadienne pour l'innovation

Additional CYCLE Pilot RCT Funding:

In an ICU survivor's words...

"It is hard to convey just how debilitated one is after an insult of intensive care magnitude.

When I was finally weaned (from mechanical ventilation), sitting in a chair was impossible....

There was a remarkably persistent and overwhelming generalized weakness and fatigue."

2012 - Clinical inspiration for CYCLE

- Sedation and invasive mechanical ventilation barriers to starting early rehabilitation
- Patients could cycle actively, even while sedated

<u>Critical Care Cycling to</u> Improve Lower Extremity Strength

Research Question:

In medical-surgical ICU patients, does 30 minutes of in-bed cycling and usual PT started within the first 4 days of mechanical ventilation, compared to usual PT alone, improve patient function at 3 days post-ICU?

CYCLE RCT

Primary Outcome

Critically ill, mechanically ventilated adults

n=360

Usual ICU physiotherapy

alone

Led by existing ICU physiotherapists at each site

Physical Function 3-days after ICU d/c Physical Function in ICU test-scored (PFIT-s)

Measured by assessors blinded to randomized group

Baseline Characteristics

	Cycling + Usual Physiotherapy n=178	Usual Physiotherapy n=182
Age (years)	61.8 ± 15.4	61.2 ± 15.8
Female sex	75 (42.1%)	80 (44.0%)
APACHE II	24.8 ± 8.9	23.1 ± 8.1
Living at home independently	154 (86.5%)	159 (87.4%)
Clinical Frailty Scale Score	3.1 ± 1.3	3.2 ± 1.3
Charlson Comorbidity Index	1 (0 to 3)	1 (0 to 3)

Primary outcome

	Cycling +	Usual	Difference
	Usual Physiotherapy	Physiotherapy	(95% CI)
Physical Function ICU Test- scored at 3-days after ICU d/c	7.7 ±1.7	7.5 ±1.8	0.23 (-0.19 to 0.65) p=0.287

Outcomes in Survivors at <u>Hospital</u> Discharge

Outcomes in Survivors at	Hospital Disch	arge O
	Cycling + Usual Physiotherapy	Usual Physiotherapy
ICU-Acquired weakness*	10 (9.6%)	13 (12.1%)
Clinical Frailty Scale Score*	4.5 ±1.5	4.9 ±1.6

*ICU-Acquired weakness & frailty: Lower numbers = better

Outcomes in Survivors at <u>Hospital</u> Discharge

	Cycling + Usual Physiotherapy	Usual Physiotherapy
ICU-Acquired weakness*	10 (9.6%)	13 (12.1%)
Clinical Frailty Scale Score*	4.5 ±1.5	4.9 ±1.6
Patient-Reported Functional Score for ICU	8.2 (5.8 to 9.0)	7.5 (4.8 to 9.0)
2-minute walk test distance (metres)	73.2 (52.0 to 107.0)	67.0 (45.0 to 96.0)
Residence at hospital d/c <u>></u> baseline	83/138 (60.1%)	84/142 (59.2%)

*ICU-Acquired weakness & frailty: Lower numbers = better

Physical function: 30-second Sit to Stand

Physical function: 30-second Sit to Stand

Published June 12, 2024

ORIGINAL ARTICLE | CRITICAL CARE REVIEWS MEETING 2024

Early In-Bed Cycle Ergometry in Mechanically Ventilated Patients

Michelle E. Kho, P.T., Ph.D.,^{1,2} Susan Berney, B.Physio, Ph.D.,^{3,4} Amy M. Pastva, P.T., M.A., Ph.D.,⁵ Laurel Kelly, M.Sc.P.T.,² Julie C. Reid, P.T., Ph.D.,¹ Karen E. A. Burns, M.D., M.Sc.,^{6,7} Andrew J. Seely, M.D., Ph.D.,^{8,9} Frédérick D'Aragon, M.D., M.Sc.,^{10,11} Bram Rochwerg, M.D., M.Sc.,^{12,13} Ian Ball, M.D., M.Sc.,^{14,15} Alison E. Fox-Robichaud, M.D., M.Sc.,^{12,16} Tim Karachi, M.D.,¹² Francois Lamontagne, M.D., M.Sc.,^{11,17} Patrick M. Archambault, M.D., M.Sc.,^{18,19} Jennifer L. Tsang, M.D., Ph.D.,^{12,20} Erick H. Duan, M.D., M.Sc.,¹² John Muscedere, M.D.,^{21,22} Avelino C. Verceles, M.D., M.Sc.,²³ Karim Serri, M.D.,²⁴ Shane W. English, M.D., M.Sc.,^{25,26} Brenda K. Reeve, M.D.,²⁷ Sangeeta Mehta, M.D.,^{28,29} Jill C. Rudkowski, M.D.,¹² Diane Heels-Ansdell, M.Sc.,¹³ Heather K. O'Grady, Ph.D.,¹ Geoff Strong, M.Sc.P.T., M.Binf.,¹ Kristy Obrovac, M.Sc.P.T.,² Daana Ajami, M.Sc.P.T.,² Laura Camposilvan, B.Sc.Kin.,² Jean-Eric Tarride, M.A., Ph.D.,^{13,30} Lehana Thabane, Ph.D.,^{13,31} Margaret S. Herridge, M.D., M.P.H.,³² Deborah J. Cook, M.D., M.Sc.,^{12,13} and the Canadian Critical Care Trials Group*

Leg Cycle Ergometry in Critically III Patients: An updated systematic review and meta-analysis

Presented by: Heather O'Grady, PhD

On behalf of: Hibaa Hasan, BSc, Alyson Takaoka, MSc, Rucha Utgikar, MD, Julie Reid, PT, PhD, Bram Rochwerg, MD, Deborah Cook, MD, Michelle Kho, PT, PhD

Methods: Inclusion Criteria for RCTs

Population Adults admitted to any ICU for \geq 24 hours, with or without mechanical ventilation

McMaster

Intervention

Any - must include cycling, started in ICU, alone or with other strategies

Comparator

Any – strategies must <u>not</u>include cycling

Outcomes

Results: Study Characteristics

	n=33 studies
Sample Size	
Median no. per study (1 st , 3 rd quartiles)	74 (40, 135)
Range per study	19-363
Centers	
Median no. per study (1 st , 3 rd quartiles)	1 (1, 1)
Range per study	1-16
ICU Type, no. (%) studies	
Mixed	9 (27%)
Cardiac	6 (18%)
General	2 (6%)
Respiratory, Medical, COVID	3 (9%)
Not specified	13 (39%)

In this systematic review and meta-analysis of 33 trials and 3,274 patients, in-bed cycling as part of ICU rehabilitation...

Improved physical function at ICU discharge and post-hospital Decreased ICU LOS by 1 day and hospital LOS by 1.5 days Was associated with rare adverse events

Patients get a head start on their recovery journey Patients get home faster Cycling can be safely incorporated into ICU rehabilitation

Published October 9, 2024

DOI: 10.1056/EVIDoa2400194

ORIGINAL ARTICLE | EUROPEAN SOCIETY OF INTENSIVE CARE MEDICINE

Leg Cycle Ergometry in Critically Ill Patients – An Updated Systematic Review and Meta-Analysis

Heather K. O'Grady, Ph.D.,¹ Hibaa Hasan, B.Sc.,¹ Bram Rochwerg, M.D., M.Sc.,^{2,3} Deborah J. Cook, M.D., M.Sc.,^{2,3,4} Alyson Takaoka, M.Sc.,⁵ Rucha Utgikar, M.D., M.Sc.,^{4,6} Julie C. Reid, P.T., Ph.D.,^{2,4} and Michelle E. Kho, P.T., Ph.D.^{1,4,7}

